TALK: SAITO'S CONJECTURE ON CHARACTERISTIC CLASSES OF CONSTRUCTIBLE ÉTALE SHEAVES

ENLIN YANG

1. INTRODUCTION

This talk is based on joint work with Yigeng Zhao.

1.1. For vector bundles on varieties, we have Chern/Characteristic classes. Chern classes measures non-triviality of vector bundles. Before 1966, Grothendieck conjectured that there exists a theory of characteristic classes for constructible étale sheaves and a discrete Riemann-Roch type formula (see [Récoltes et Semailles, Note 87₁]). Such construction requires a generalization of Artin-Serre-Swan type local invariants to higher dimensional varieties. Let us fix a few notation.

- k: perfect field.
- $\Lambda = \mathbb{F}_{\ell}, \mathbb{Q}_{\ell} \text{ or } \overline{\mathbb{Q}}_{\ell} \text{ for a prime } \ell \in k^{\times}.$
- X: variety over k.
- \mathcal{F} : constructible etale sheaf of Λ -modules on X.

1.2. What is a constructible etale sheaf? The most interesting example comes from the following case: there is an open subscheme $U \subseteq X$, and \mathcal{F} determines a Λ -representation of the etale fundamental group $\pi_1(U)$. When \mathcal{F} comes from a representation of $\pi_1(U)$, then we say \mathcal{F} is a locally constant (smooth) sheaf on X. Otherwise \mathcal{F} has ramification along the boundary $X \setminus U$. Its characteristic class $cc_{X/k}(\mathcal{F}) \in CH_0(X)$ (or its refined version: the Swan class $\operatorname{Sw}_{X/k}^{\operatorname{cc}}(\mathcal{F}) \in CH_0(X \setminus U)$) measures the ramification of \mathcal{F} along the boundary $X \setminus U$. In some sense, the characteristic/Swan class measures the "distance" between \mathcal{F} and the smooth sheaf $\Lambda^{\oplus \operatorname{rank}\mathcal{F}}$ (measures the non-smoothness of \mathcal{F}).

Example 1.3. Assume that X is connected, smooth and proper of dimension d over k. When \mathcal{F} is smooth on X, then we have the Gauss-Bonnet-Chern formula for the Euler-Poincare characteristic:

(1.3.1)
$$\chi(X_{\bar{k}},\mathcal{F}) = \chi(X_{\bar{k}},\Lambda^{\oplus \operatorname{rank}\mathcal{F}}) = \operatorname{rank}\mathcal{F} \cdot \chi(X_{\bar{k}},\Lambda) = \operatorname{rank}\mathcal{F} \cdot \operatorname{deg} c_d(\Omega^{1,\vee}_{X/k}).$$

In general, if \mathcal{F} is smooth on U, then $\chi(X_{\bar{k}}, \mathcal{F}) - \chi(X_{\bar{k}}, \Lambda^{\oplus \operatorname{rank}\mathcal{F}})$ is the degree of a zero cycle class supported on the boundary $X \setminus U$ (namely, the Swan classes):

(1.3.2)
$$\chi(X_{\bar{k}},\mathcal{F}) - \chi(X_{\bar{k}},\Lambda^{\oplus \operatorname{rank}\mathcal{F}}) = -\operatorname{deg}(\operatorname{Sw}_{X/k}^{\operatorname{cc}}(\mathcal{F})).$$

If moreover X is a smooth proper curve, we have the well-known Grothendieck-Ogg-Safarevich formula

(1.3.3)
$$\chi(X_{\bar{k}}, \mathcal{F}) - \chi(X_{\bar{k}}, \Lambda^{\oplus \operatorname{rank}\mathcal{F}}) = -\sum_{x \in |X \setminus U|} a_x(\mathcal{F})$$

where $a_x(\mathcal{F}) = \dim \mathcal{F}_{\bar{\eta}_x} - \dim \mathcal{F}_{\bar{x}} + \operatorname{Sw}_x(\mathcal{F})$ is the Artin conductor of \mathcal{F} at x, $\operatorname{Sw}_x(\mathcal{F})$ is the Swan conductor.

March 28, 2025.

ENLIN YANG

1.4. Assume that X is smooth and connected over k. Up to now, there are two kinds of characteristic classes $(C_{X/k} \text{ and } cc_{X/k})$ and three kinds of Swan classes $(\operatorname{Sw}_{X/k}^{as}, \operatorname{Sw}_{X/k}^{cc})$ and $\operatorname{Sw}_{X/k}^{ks})$.

- (1) The cohomological characteristic class $C_{X/k}(\mathcal{F}) \in H^0(X, \mathcal{K}_{X/k})$ is implicitly defined in [SGA5] and studied by Abbes and Saito around 2007. (See also Kashiwara-Schapira's book "Sheaves on manifolds")
- (2) The geometric characteristic class $cc_{X/k}(\mathcal{F}) \in CH_0(X)$ is defined by Saito around 2015.

Even though their definitions and constructions are very different, Saito conjectures that they are essentially the same.

Conjecture 1.5 (Takeshi Saito, [Sai17]). Consider the cycle class map $cl : CH_0(X) \to H^0(X, \mathcal{K}_{X/k})$, where $\mathcal{K}_{X/k} = Rf^! \Lambda$ and $f : X \to Speck$. For any constructible étale sheaf \mathcal{F} on X, we have

$$\operatorname{cl}(cc_{X/k}(\mathcal{F})) = C_{X/k}(\mathcal{F}).$$

Please refer to [UYZ20] for the version of Swan classes. Note that, when $k = \mathbb{F}_p$ is a finite field and $\Lambda = \mathbb{Z}/\ell^m$ and if X is projective and smooth, then we have $H^0(X, \mathcal{K}_{X/k}) \simeq H^1(X, \mathbb{Z}/\ell^m)^{\vee} \simeq \pi_1^{ab}(X)/\ell^m$, which may highly non-trivial.

Here is our main result:

Theorem 1.6 (Y-Zhao, [YZ25]). Saito's conjecture holds if X is quasi-projective.

If using more ∞ -category, we could be able to prove Saito's conjecture in general.

2. Idea of the proof

In the following, we omit to write R or L to denote the derived functors.

2.1. Before describing the idea of proofs, let me discuss a little bit about \mathcal{F} -smooth morphisms (or \mathcal{F} -ULA morphisms). This is a cohomological version of the usual smooth morphisms. Let \mathcal{F} be a constructible étale sheaf on X. In general, for a separated morphism $f: X \to S$ of finite type, we say f is \mathcal{F} -smooth if the relative purity holds for any base change diagram

(2.1.1)
$$\begin{array}{c} W \xrightarrow{i} X \\ p \\ \Box \\ T \xrightarrow{\delta} S, \end{array}$$

i.e., the canonical morphism

(2.1.2)
$$i^* \mathcal{F} \otimes^L p^* \delta^! \Lambda \xrightarrow{c_{\delta,f,\mathcal{F}}} i^! \mathcal{F}$$

is an isomorphism. The map (2.1.2) is defined to be the composition

$$i^* \mathcal{F} \otimes^L p^* \delta^! \Lambda \xrightarrow{id \otimes \mathrm{b.c}} i^* \mathcal{F} \otimes^L i^! f^* \Lambda \xrightarrow{\mathrm{adj}} i^! i_! (i^* \mathcal{F} \otimes^L i^! f^* \Lambda) \xrightarrow{\mathrm{proj.formula}} i^! (\mathcal{F} \otimes^L i_! i^! f^* \Lambda) \xrightarrow{\mathrm{adj}} i^! \mathcal{F}.$$

Example 2.2. (1) If $f: X \to S$ is a smooth morphism, then f is Λ -smooth for the constant sheaf Λ .

- (2) If $f = id_X : X \to X$ is the identity, then f is \mathcal{F} -smooth if and only if \mathcal{F} is smooth (locally constant) on X.
- (3) If S = Speck is a point, then $X \to \text{Spec}k$ is \mathcal{F} -smooth for any constructible etale sheaf \mathcal{F} .

Definition 2.3. For $(\mathcal{F}, X \xrightarrow{f} S)$, its NA-locus (non-acyclicity locus) is the smallest closed subset $Z \subseteq X$ such that $X \setminus Z \to S$ is \mathcal{F} -smooth.

2.4. Now let me explain our ideas how to prove Theorem 1.6. We use fibration method.

2.4.1. Wonderful case. If there is a \mathcal{F} -smooth morphism $f : X \to Y$ to a smooth curve, then we proved that $C_{X/k}(\mathcal{F})$ is determined by the family $\{C_{X_v/v}(\mathcal{F}|_{X_v})\}_{v \in |Y|}$. The later family is encoded by the relative cohomological characteristic class $C_{X/Y}(\mathcal{F}) \in H^0(X, \mathcal{K}_{X/Y})$ with $\mathcal{K}_{X/Y} = Rf^!\Lambda$, which is introduced in [YZ21] under transversal conditions and generated to ULA-conditions by Lu and Zheng.

2.4.2. Good fibration. In general, we don't have such \mathcal{F} -smooth fibration. But not too bad, after blowing-up, we could find a good Lefschetz pencil by a result of Saito-Yatagawa: The morphism $f : X \to Y$ is a good fibration with respect to \mathcal{F} if f is \mathcal{F} -smooth outside finitely many closed points such that each fiber contains at most one point of the NA-locus.

In this case, we still have $C_{X/Y}(\mathcal{F})$ (encoding the information $\{C_{X_v/v}(\mathcal{F}|_{X_v})\}_{v\in |Y|}$). But this family cannot determine $C_{X/k}(\mathcal{F})$ anymore. But by the wonderful case, the obstruction comes from a class supported on the NA-locus. Thus we have to construct a class $C_{\Delta}(\mathcal{F})$ supported on the NAlocus, which is called the (cohomological) non-acyclicity class. This NA-class $C_{\Delta}(\mathcal{F})$ satisfies the fibration formula below. Similar formula also holds for the geometric characteristic class $c_{X/k}(\mathcal{F})$.

In order to compare $C_{X/k}(\mathcal{F})$ with $cc_{X/k}(\mathcal{F})$, we only need to calculate $C_{\Delta}(\mathcal{F})$ for isolated singularities. This is given by the cohomological Milnor formula.

Now, we have a new class: NA-class. You can run the previous argument and then get a family/relative version of this NA-class. In the proof of cohomological Milnor formula, we need this relative version to do deformation!

3. Non-acyclicity classes

3.1. We recall the transversality condition introduced in [YZ25, 2.1], which is a relative version of the transversality condition studied by Saito [Sai17, Definition 8.5]. Consider the following cartesian diagram in Sch_S:

$$(3.1.1) \qquad \begin{array}{c} W \xrightarrow{i} X \\ p & \Box \\ T \xrightarrow{\delta} Y. \end{array}$$

By [YZ25, 2.11], there is a functor $\delta^{\Delta} : D_{ctf}(X, \Lambda) \to D_{ctf}(W, \Lambda)$ such that for any $\mathcal{F} \in D_{ctf}(X, \Lambda)$, we have a distinguished triangle

(3.1.2)
$$i^* \mathcal{F} \otimes^L p^* \delta^! \Lambda \xrightarrow{c_{\delta,f,\mathcal{F}}} i^! \mathcal{F} \to \delta^\Delta \mathcal{F} \xrightarrow{+1} .$$

If $\delta^{\Delta}(\mathcal{F})=0$, then we say that the morphism δ is \mathcal{F} -transversal.

3.2. Consider a commutative diagram in Sch_S :

where $\tau : Z \to X$ is a closed immersion and g is a smooth morphism. Let us denote the diagram (3.2.1) simply by $\Delta = \Delta_{X/Y/S}^Z$ Let $\mathcal{F} \in D_{ctf}(X, \Lambda)$ such that $X \setminus Z \to Y$ is $\mathcal{F}|_{X \setminus Z}$ -smooth and that $h : X \to S$ is \mathcal{F} -smooth.

3.3. Let $i: X \times_Y X \to X \times_S X$ be the base change of the diagonal morphism $\delta: Y \to Y \times_S Y$:

$$(3.3.1) \qquad \qquad \begin{array}{c} X = & X \\ & & & & \\ & & & & \\ f \begin{pmatrix} \lambda_1 \\ X \times_Y X \xrightarrow{i} & X \times_S X \\ & & & \\ &$$

where δ_0 and δ_1 are the diagonal morphisms. Put $K_{X/S} = h!\Lambda$ and $\mathcal{K}_{\Delta} := \delta^{\Delta}\mathcal{K}_{X/S} \simeq \delta_1^*\delta^{\Delta}\delta_{0*}\mathcal{K}_{X/S}$. We have the following distinguished triangle

(3.3.2)
$$\mathcal{K}_{X/Y} \to \mathcal{K}_{X/S} \to \mathcal{K}_{\Delta} \xrightarrow{+1}$$

We put

$$\mathcal{H}_S := R\mathcal{H}om_{X \times_S X}(\mathrm{pr}_2^*\mathcal{F}, \mathrm{pr}_1^!\mathcal{F}) \xleftarrow{\simeq} \mathcal{T}_S := \mathcal{F} \boxtimes_S^L D_{X/S}(\mathcal{F}).$$

We have the following microlocal result:

Lemma 3.4. $\delta_1^* \delta^{\Delta} \mathcal{T}_S$ is supported on Z.

Definition 3.5 ([YZ25, Definition 4.6]). The relative cohomological characteristic class $C_{X/S}(\mathcal{F})$ is the composition (cf. [YZ25, 3.1])

(3.5.1)
$$\Lambda \xrightarrow{\mathrm{id}} R\mathcal{H}om(\mathcal{F}, \mathcal{F}) \xrightarrow{\simeq} \delta_0^! \mathcal{H}_S \xleftarrow{\simeq} \delta_0^! \mathcal{T}_S \to \delta_0^* \mathcal{T}_S \xrightarrow{\mathrm{ev}} \mathcal{K}_{X/S}.$$

The non-acyclicity class $C_{\Delta}(\mathcal{F}) \in H^0_Z(X, \mathcal{K}_{\Delta})$ is the composition

$$(3.5.2) \qquad \Lambda \to \delta_0^! \mathcal{H}_S \stackrel{\simeq}{\leftarrow} \delta_0^! \mathcal{T}_S \simeq \delta_1^! i^! \mathcal{T}_S \to \delta_1^* i^! \mathcal{T}_S \to \delta_1^* \delta^\Delta \mathcal{T}_S \stackrel{\simeq}{\leftarrow} \tau_* \tau^! \delta_1^* \delta^\Delta \mathcal{T}_S \to \tau_* \tau^! \mathcal{K}_{X/Y/S}.$$

If the following condition holds:

(3.5.3)
$$H^0(Z, \mathcal{K}_{Z/Y}) = 0 \text{ and } H^1(Z, \mathcal{K}_{Z/Y}) = 0$$

then the map $H^0_Z(X, \mathcal{K}_{X/S}) \to H^0_Z(X, \mathcal{K}_{X/Y/S})$ is an isomorphism. In this case, the class $C_\Delta(\mathcal{F}) \in H^0_Z(X, \mathcal{K}_{X/Y/S})$ defines an element of $H^0_Z(X, \mathcal{K}_{X/S})$.

Now we summarize the functorial properties for the non-acyclicity classes (cf. [YZ25, Theorem 1.9, Proposition 1.11, Theorem 1.12, Theorem 1.14]).

Theorem 3.6 (Y-Zhao, [YZ25]).

(1) (Fibration formula) If
$$H^0(Z, \mathcal{K}_{Z/Y}) = H^1(Z, \mathcal{K}_{Z/Y}) = 0$$
, then we have

(3.6.1)
$$C_{X/S}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap C_{X/Y}(\mathcal{F}) + C_{\Delta}(\mathcal{F}) \quad \text{in} \quad H^0(X, \mathcal{K}_{X/S}).$$

(2) (Pull-back) Let $b: S' \to S$ be a morphism of Noetherian schemes. Let $\Delta' = \Delta_{X'/Y'/S'}^{Z'}$ be the base change of $\Delta = \Delta_{X/Y/S}^{Z}$ by $b: S' \to S$. Let $b_X: X' = X \times_S S' \to X$ be the base change of b by $X \to S$. Then we have

(3.6.2)
$$b_X^* C_\Delta(\mathcal{F}) = C_{\Delta'}(b_X^* \mathcal{F}) \quad \text{in} \quad H^0_{Z'}(X', \mathcal{K}_{X'/Y'/S'}),$$

where $b_X^*: H^0_Z(X, \mathcal{K}_{X/Y/S}) \to H^0_{Z'}(X', \mathcal{K}_{\Delta'})$ is the induced pull-back morphism.

(3) (Proper push-forward) Consider a diagram $\Delta' = \Delta_{X'/Y/S}^{Z'}$. Let $s : X \to X'$ be a proper morphism over Y such that $Z \subseteq s^{-1}(Z')$. Then we have

(3.6.3)
$$s_*(C_{\Delta}(\mathcal{F})) = C_{\Delta'}(Rs_*\mathcal{F}) \quad \text{in} \quad H^0_{Z'}(X', \mathcal{K}_{X'/Y/S}).$$

where $s_*: H^0_Z(X, \mathcal{K}_\Delta) \to H^0_{Z'}(X', \Delta')$ is the induced push-forward morphism.

(4) (Cohomological Milnor formula) Assume S = Speck. If $Z = \{x\}$ and Y is a smooth curve, then we have

(3.6.4)
$$C_{\Delta}(\mathcal{F}) = -\operatorname{dim} \operatorname{tot} R\Phi_{\bar{x}}(\mathcal{F}, f) \quad \text{in} \quad \Lambda = H^0_x(X, \mathcal{K}_{X/k})$$

where $R\Phi(\mathcal{F}, f)$ is the complex of vanishing cycles and dimtot = dim + Sw is the total dimension.

(5) (Cohomological conductor formula) Assume S = Speck. If Y is a smooth connected curve over k and $Z = f^{-1}(y)$ for a closed point $y \in |Y|$, then we have

(3.6.5)
$$f_*C_{\Delta}(\mathcal{F}) = -a_y(Rf_*\mathcal{F}) \quad \text{in} \quad \Lambda = H_y^0(Y, \mathcal{K}_{Y/k})$$

(6) The formation of non-acyclicity classes is also compatible with specialization maps (cf. [YZ25, Proposition 4.17]).

3.7. Let X be a smooth connected curve over k. Let $\mathcal{F} \in D_{\text{ctf}}(X, \Lambda)$ and $Z \subseteq X$ be a finite set of closed points such that $\mathcal{F}|_{X\setminus Z}$ are smooth. By the cohomological Milnor formula (3.6.4), we have the following (motivic) expression for the Artin conductor of \mathcal{F} at $x \in Z$

(3.7.1)
$$a_x(\mathcal{F}) = \operatorname{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, \operatorname{id}) = -C_{U/U/k}^{\{x\}}(\mathcal{F}|_U),$$

where U is any open subscheme of X such that $U \cap Z = \{x\}$. By (3.6.1), we get the following cohomological Grothendieck-Ogg-Shafarevich formula (cf. [YZ25, Corollary 6.6]):

(3.7.2)
$$C_{X/k}(\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot c_1(\Omega^{1,\vee}_{X/k}) - \sum_{x \in Z} a_x(\mathcal{F}) \cdot [x] \quad \text{in} \quad H^0(X, \mathcal{K}_{X/k}).$$

3.8. Idea of the proof. May assume $Y = \mathbb{A}^1$. Consider

$$Z \times \mathbb{P}^1 \xrightarrow{\tau} X \times \mathbb{P}^1 \xrightarrow{f \times \mathrm{id}} Y \times \mathbb{P}^1,$$

$$(3.8.1)$$

$$ft \qquad \mathbb{P}^1$$

and $\mathcal{G} = \operatorname{pr}_1^* \mathcal{F} \otimes \mathcal{L}_!(ft)$, where \mathcal{L} is the Artin-Schreier sheaf on \mathbb{A}^1 associated with some character $\psi : \mathbb{F}_p \to \Lambda^*$. After taking a finite extension $\mathbb{P} \to \mathbb{P}^1$, we may assume $\mathcal{G} \in D^b_c(\Delta \times \mathbb{P} \setminus \infty)$. Applying the pull-back and specialization formulas to $C_{\Delta \times \mathbb{P} \setminus \infty}(\mathcal{G}) \in H^0(Z \times \mathbb{P}, \mathcal{K}_{Z \times \mathbb{P} / \mathbb{P}}) = \bigoplus_{x \in Z} \Lambda$, we get

$$C_{\Delta}(\Psi_{\mathrm{pr}_2}(\mathcal{G})) = C_{\Delta}(\mathcal{F}).$$

Since $\Psi_{\mathrm{pr}_2}(\mathcal{G})$ is supported on Z, by definition of NA class, we get

$$C_{\Delta}(\mathcal{F}) = C_{\Delta}(\Psi_{\mathrm{pr}_2}(\mathcal{G})) = -\sum_{x \in \mathbb{Z}} \mathrm{dimtot} R\Phi_{\overline{x}}(\mathcal{F}, f) \cdot [x].$$

Remark 3.9. I found an open question due to Drinfeld in Beilinson's paper [Bei07]: For microlocalanalysis, our habitat is a smooth variety, which does not look very natural for the story. What intrinsic geometry is truly relevant for the micro-local analysis of sheaves? It should make sense outside the smooth context, so that one could play with singular spaces directly, without embedding them into smooth ones.

Here is a partial answer:

Smooth case	Singular case
Characteristic cycle	relative cohomological class and NA class

ENLIN YANG

References

- [Bei07] A. Beilinson, Topological E-factors, Pure and Applied Mathematics Quarterly, Volume 3, Number 1 (2007): 357-391. ↑5
- [Sai17] T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Inventiones mathematicae, 207 (2017): 597-695. [↑]2, [↑]3
- [UYZ20] N. Umezaki, E. Yang and Y. Zhao, Characteristic class and the ε-factor of an étale sheaf, Trans. Amer. Math. Soc. 373 (2020): 6887-6927. [↑]2
- [YZ21] E. Yang and Y. Zhao, On the relative twist formula of ℓ-adic sheaves, Acta. Math. Sin.-English Ser. 37 (2021): 73-94. ^{↑3}
- [YZ25] E. Yang and Y. Zhao, Cohomological Milnor formula and Saito's conjecture on characteristic classes, Inventiones Mathematicae 240 (2025): 123-191. [↑]2, [↑]3, [↑]4, [↑]5