LECTURE ON SAITO'S CONJECTURE ON CHARACTERISTIC CLASSES OF CONSTRUCTIBLE ÉTALE SHEAVES

ENLIN YANG

ABSTRACT. This talk is based on joint work with Yigeng Zhao.

1. INTRODUCTION

- 1.1. Let us first introduce a few notation and discuss some motivations.
 - k: perfect field of characteristic p > 0.
 - $\Lambda = \mathbb{F}_{\ell}$: finite field of characteristic $\ell \neq p$.
 - X: smooth scheme over k.
 - \mathcal{F} : constructible etale sheaf of Λ -modules on X. (simply viewed as a Λ -representation of the etale fundamental group $\pi_1(U)$ for an open subscheme $U \subseteq X$)
 - Geometric ramification studies the behavior of \mathcal{F} along the boundary $X \setminus U$.
 - The characteristic class of \mathcal{F} measures the ramification of \mathcal{F} . (It is the discrete version of the characteristic class for a vector bundle.)
 - For any separated morphism $f: X \to Y$, we put $\mathcal{K}_{X/Y} = Rf^! \Lambda$ and $D_{X/Y}(-) = R\mathcal{H}om(-, \mathcal{K}_{X/Y})$
 - We omit to write R or L to denote the derived functors.

There are two kinds of characteristic classes. Their definitions are quite different.

Conjecture 1.2 (Takeshi Saito, 2015). Consider the cycle class map $cl : CH_0(X) \to H^0(X, \mathcal{K}_{X/k})$, where $\mathcal{K}_{X/k} = Rf!\Lambda$ and $f : X \to \text{Speck}$. Then we have

$$\operatorname{cl}(cc_{X/k}(\mathcal{F})) = C_{X/k}(\mathcal{F}).$$

- The cohomological characteristic class $C_{X/k}(\mathcal{F}) \in H^0(X, \mathcal{K}_{X/k})$ is implicitly defined in [SGA7] and studied by Abbes and Saito around 2007.
- The geometric characteristic class $cc_{X/k}(\mathcal{F}) \in CH_0(X)$ is defined by Saito around 2015.
- They can be viewed as higher dimensional (global) analogues of the Artin conductors (local invariants).
- Characteristic classes are quite important! Here is an application. Assume k is a finite field and X smooth and projective. Consider the Grothendieck L-function

$$L(X, \mathcal{F}, t) = \det(1 - \operatorname{Frob} \cdot t; R\Gamma(X_{\bar{k}}, \mathcal{F}))^{-1}.$$

It satisfies the following functional equation

$$L(X, \mathcal{F}, t) = t^{-\chi(X, \mathcal{F})} \cdot \varepsilon(X, \mathcal{F}) \cdot L(X, D(\mathcal{F}), t^{-1}).$$

Then we have the global index formula for the Euler-Poincare characteristic

 $\chi(X,\mathcal{F}) = \deg cc_{X/k}(\mathcal{F}) = \operatorname{Tr} C_{X/k}(\mathcal{F}),$

and the twist formula for the global epsilon factor

 $\varepsilon(X, \mathcal{F} \otimes \mathcal{G}) = \varepsilon(X, \mathcal{F})^{\mathrm{rk}\mathcal{G}} \cdot \det \mathcal{G}(\rho_X(-cc_{X/k}(\mathcal{F}))),$

March 17, 2025.

ENLIN YANG

where $\rho_X : CH_0(X) \to \pi_1^{ab}(X)$ is the reciprocity map and \mathcal{G} is any smooth sheaf on X.

Here is our main result:

Theorem 1.3 (Yang-Zhao, 2022). Saito's conjecture holds if X is quasi-projective.

If using more ∞ -category, we could be able to prove Saito's conjecture in general.

1.4. **Idea of the proof.** In some sense, we have to give a cohomological construction for Saito's characteristic cycle. So, we have to propose a cohomological way to study ramification theory.

2. Cohomological approach

2.1. We recall the transversality condition introduced in [3, 2.1], which is a relative version of the transversality condition studied by Saito [1, Definition 8.5]. Consider the following cartesian diagram in Sch_S :

(2.1.1)
$$\begin{array}{c} X \xrightarrow{i} Y \\ p \downarrow & \Box & \downarrow f \\ W \xrightarrow{\delta} T. \end{array}$$

By [3, 2.11], there is a functor $\delta^{\Delta} : D_{ctf}(Y, \Lambda) \to D_{ctf}(X, \Lambda)$ such that for any $\mathcal{F} \in D_{ctf}(Y, \Lambda)$, we have a distinguished triangle

(2.1.2)
$$i^* \mathcal{F} \otimes^L p^* \delta^! \Lambda \xrightarrow{c_{\delta,f,\mathcal{F}}} i^! \mathcal{F} \to \delta^\Delta \mathcal{F} \xrightarrow{+1}$$

The first map is defined to be the composition

$$i^{*}\mathcal{F} \otimes^{L} p^{*}\delta^{!}\Lambda \xrightarrow{id \otimes b.c} i^{*}\mathcal{F} \otimes^{L} i^{!}f^{*}\Lambda \xrightarrow{\operatorname{adj}} i^{!}i_{!}(i^{*}\mathcal{F} \otimes^{L} i^{!}f^{*}\Lambda) \xrightarrow{\operatorname{proj.formula}} i^{!}(\mathcal{F} \otimes^{L} i_{!}i^{!}f^{*}\Lambda) \xrightarrow{\operatorname{adj}} i^{!}\mathcal{F}.$$

We say that the morphism δ is \mathcal{F} -transversal if $\delta^{\Delta}(\mathcal{F})=0$.

The following definition can be viewed as a cohomological version of smooth morphisms (cf. Lu-Zheng and Peter Scholze).

Definition 2.2. Fix $\mathcal{F} \in D_{\text{ctf}}(Y, \Lambda)$. We say f is \mathcal{F} -smooth if for any such diagram (2.1.1), the morphism δ is \mathcal{F} -transversal.

2.3. Consider a commutative diagram in Sch_S :

where $\tau : Z \to X$ is a closed immersion and g is a smooth morphism. Let us denote the diagram (2.3.1) simply by $\Delta = \Delta_{X/Y/S}^Z$ Let $\mathcal{F} \in D_{ctf}(X, \Lambda)$ such that $X \setminus Z \to Y$ is $\mathcal{F}|_{X \setminus Z}$ -smooth and that $h : X \to S$ is \mathcal{F} -smooth.

2.4. Let $i: X \times_Y X \to X \times_S X$ be the base change of the diagonal morphism $\delta: Y \to Y \times_S Y$:

(2.4.1)
$$X = X$$

$$\downarrow \delta_1 \qquad \Box \qquad \downarrow \delta_0$$

$$f \begin{pmatrix} X \times_Y X \xrightarrow{i} X \times_S X \\ \downarrow^p \qquad \Box \qquad \downarrow f \times f \\ Y \xrightarrow{\delta} Y \times_S Y,$$

where δ_0 and δ_1 are the diagonal morphisms. Put $K_{X/S} = h^! \Lambda$ and $\mathcal{K}_{\Delta} := \delta^{\Delta} \mathcal{K}_{X/S} \simeq \delta_1^* \delta^{\Delta} \delta_{0*} \mathcal{K}_{X/S}$. We have the following distinguished triangle

(2.4.2)
$$\mathcal{K}_{X/Y} \to \mathcal{K}_{X/S} \to \mathcal{K}_{\Delta} \xrightarrow{+1}$$

We put

$$\mathcal{H}_S := R\mathcal{H}om_{X \times_S X}(\mathrm{pr}_2^*\mathcal{F}, \mathrm{pr}_1^!\mathcal{F}) \xleftarrow{\simeq} \mathcal{T}_S := \mathcal{F} \boxtimes_S^L D_{X/S}(\mathcal{F}).$$

Lemma 2.5. $\delta_1^* \delta^{\Delta} \mathcal{T}_S$ is supported on Z.

Definition 2.6 ([3, Definition 4.6]). The relative cohomological characteristic class $C_{X/S}(\mathcal{F})$ is the composition (cf. [3, 3.1])

(2.6.1)
$$\Lambda \xrightarrow{\mathrm{id}} R\mathcal{H}om(\mathcal{F}, \mathcal{F}) \xrightarrow{\simeq} \delta_0^! \mathcal{H}_S \xleftarrow{\simeq} \delta_0^! \mathcal{T}_S \to \delta_0^* \mathcal{T}_S \xrightarrow{\mathrm{ev}} \mathcal{K}_{X/S}.$$

The non-acyclicity class $C_{\Delta}(\mathcal{F}) \in H^0_Z(X, \mathcal{K}_{\Delta})$ is the composition

$$(2.6.2) \qquad \Lambda \to \delta_0^! \mathcal{H}_S \stackrel{\simeq}{\leftarrow} \delta_0^! \mathcal{T}_S \simeq \delta_1^! i^! \mathcal{T}_S \to \delta_1^* i^! \mathcal{T}_S \to \delta_1^* \delta^\Delta \mathcal{T}_S \stackrel{\simeq}{\leftarrow} \tau_* \tau^! \delta_1^* \delta^\Delta \mathcal{T}_S \to \tau_* \tau^! \mathcal{K}_{X/Y/S}.$$

If the following condition holds:

(2.6.3)
$$H^0(Z, \mathcal{K}_{Z/Y}) = 0 \text{ and } H^1(Z, \mathcal{K}_{Z/Y}) = 0$$

then the map $H^0_Z(X, \mathcal{K}_{X/S}) \to H^0_Z(X, \mathcal{K}_{X/Y/S})$ is an isomorphism. In this case, the class $C_\Delta(\mathcal{F}) \in H^0_Z(X, \mathcal{K}_{X/Y/S})$ defines an element of $H^0_Z(X, \mathcal{K}_{X/S})$.

Now we summarize the functorial properties for the non-acyclicity classes (cf. [3, Theorem 1.9, Proposition 1.11, Theorem 1.12, Theorem 1.14]).

Theorem 2.7 (Yang-Zhao).

(1) (Fibration formula) If $H^0(Z, \mathcal{K}_{Z/Y}) = H^1(Z, \mathcal{K}_{Z/Y}) = 0$, then we have

(2.7.1)
$$C_{X/S}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap C_{X/Y}(\mathcal{F}) + C_{\Delta}(\mathcal{F}) \quad \text{in} \quad H^0(X, \mathcal{K}_{X/S}).$$

(2) (Pull-back) Let $b: S' \to S$ be a morphism of Noetherian schemes. Let $\Delta' = \Delta_{X'/Y'/S'}^{Z'}$ be the base change of $\Delta = \Delta_{X/Y/S}^{Z}$ by $b: S' \to S$. Let $b_X: X' = X \times_S S' \to X$ be the base change of b by $X \to S$. Then we have

(2.7.2)
$$b_X^* C_\Delta(\mathcal{F}) = C_{\Delta'}(b_X^* \mathcal{F}) \quad \text{in} \quad H^0_{Z'}(X', \mathcal{K}_{X'/Y'/S'}),$$

where $b_X^*: H^0_Z(X, \mathcal{K}_{X/Y/S}) \to H^0_{Z'}(X', \mathcal{K}_{\Delta'})$ is the induced pull-back morphism.

(3) (Proper push-forward) Consider a diagram $\Delta' = \Delta_{X'/Y/S}^{Z'}$. Let $s : X \to X'$ be a proper morphism over Y such that $Z \subseteq s^{-1}(Z')$. Then we have

(2.7.3)
$$s_*(C_{\Delta}(\mathcal{F})) = C_{\Delta'}(Rs_*\mathcal{F}) \quad \text{in} \quad H^0_{Z'}(X', \mathcal{K}_{X'/Y/S}),$$

where $s_*: H^0_Z(X, \mathcal{K}_\Delta) \to H^0_{Z'}(X', \Delta')$ is the induced push-forward morphism.

ENLIN YANG

(4) (Cohomological Milnor formula) Assume S = Speck. If $Z = \{x\}$ and Y is a smooth curve, then we have

(2.7.4)
$$C_{\Delta}(\mathcal{F}) = -\operatorname{dim}\operatorname{tot} R\Phi_{\bar{x}}(\mathcal{F}, f) \quad \text{in} \quad \Lambda = H^0_x(X, \mathcal{K}_{X/k})$$

where $R\Phi(\mathcal{F}, f)$ is the complex of vanishing cycles and dimtot = dim + Sw is the total dimension.

(5) (Cohomological conductor formula) Assume S = Speck. If Y is a smooth connected curve over k and $Z = f^{-1}(y)$ for a closed point $y \in |Y|$, then we have

(2.7.5)
$$f_*C_{\Delta}(\mathcal{F}) = -a_y(Rf_*\mathcal{F}) \quad \text{in} \quad \Lambda = H_y^0(Y, \mathcal{K}_{Y/k}),$$

where $a_y(\mathcal{G}) = \operatorname{rank} \mathcal{G}|_{\overline{\eta}} - \operatorname{rank} \mathcal{G}_{\overline{y}} + \operatorname{Sw}_y \mathcal{G}$ is the Artin conductor of the object $\mathcal{G} \in D_{\operatorname{ctf}}(Y, \Lambda)$ at y and η is the generic point of Y.

(6) The formation of non-acyclicity classes is also compatible with specialization maps (cf. [3, Proposition 4.17]). We call (2.7.1) the fibration formula for characteristic class, which is motivated from [2].

2.8. Let X be a smooth connected curve over k. Let $\mathcal{F} \in D_{ctf}(X, \Lambda)$ and $Z \subseteq X$ be a finite set of closed points such that the cohomology sheaves of $\mathcal{F}|_{X\setminus Z}$ are locally constant. By the cohomological Milnor formula (2.7.4), we have the following (motivic) expression for the Artin conductor of \mathcal{F} at $x \in Z$

(2.8.1)
$$a_x(\mathcal{F}) = \operatorname{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, \operatorname{id}) = -C_{U/U/k}^{\{x\}}(\mathcal{F}|_U),$$

where U is any open subscheme of X such that $U \cap Z = \{x\}$. By (2.7.1), we get the following cohomological Grothendieck-Ogg-Shafarevich formula (cf. [3, Corollary 6.6]):

(2.8.2)
$$C_{X/k}(\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot c_1(\Omega_{X/k}^{1,\vee}) - \sum_{x \in Z} a_x(\mathcal{F}) \cdot [x] \quad \text{in} \quad H^0(X, \mathcal{K}_{X/k}).$$

2.9. Idea of the proof. May assume $Y = \mathbb{A}^1$. Consider

(2.9.1)
$$Z \times \mathbb{P}^1 \xrightarrow{\tau} X \times \mathbb{P}^1 \xrightarrow{f \times \mathrm{id}} Y \times \mathbb{P}^1,$$

and $\mathcal{G} = \operatorname{pr}_1^* \mathcal{F} \otimes \mathcal{L}_1(ft)$, where \mathcal{L} is the Artin-Schreier sheaf on \mathbb{A}^1 associated with some character $\psi : \mathbb{F}_p \to \Lambda^*$. After taking a finite extension $\mathbb{P} \to \mathbb{P}^1$, we may assume $\mathcal{G} \in D_c^b(\Delta \times \mathbb{P} \setminus \infty)$. Applying the pull-back and specialization formulas to $C_{\Delta \times \mathbb{P} \setminus \infty}(\mathcal{G}) \in H^0(Z \times \mathbb{P}, \mathcal{K}_{Z \times \mathbb{P} / \mathbb{P}}) = \bigoplus_{x \in Z} \Lambda$, we get

$$C_{\Delta}(\Psi_{\mathrm{pr}_2}(\mathcal{G})) = C_{\Delta}(\mathcal{F}).$$

Since $\Psi_{\mathrm{pr}_2}(\mathcal{G})$ is supported on Z, by definition of NA class, we get

$$C_{\Delta}(\mathcal{F}) = C_{\Delta}(\Psi_{\mathrm{pr}_2}(\mathcal{G})) = -\sum_{x \in \mathbb{Z}} \mathrm{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, f) \cdot [x].$$

References

- T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Inventiones mathematicae, 207 (2017): 597-695. [↑]2
- [2] N. Umezaki, E. Yang and Y. Zhao, Characteristic class and the ε-factor of an étale sheaf, Trans. Amer. Math. Soc. 373 (2020): 6887-6927. [↑]4
- [3] E. Yang and Y. Zhao, Cohomological Milnor formula and Saito's conjecture on characteristic classes, 2022, arXiv:2209.11086. ¹2, ¹3, ¹4