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A B S T R A C T   

As an analytic tool in medicine, deep learning has gained great attention and opened new ways for disease 
diagnosis. Recent studies validate the effectiveness of deep learning algorithms for binary classification of skin 
lesions (i.e., melanomas and nevi classes) with dermoscopic images. Nonetheless, those binary classification 
methods cannot be applied to the general clinical situation of skin cancer screening in which multi-class clas-
sification must be taken into account. The main objective of this research is to develop, implement, and calibrate 
an advanced deep learning model in the context of automated multi-class classification of skin lesions. The 
proposed Deep Convolutional Neural Network (DCNN) model is carefully designed with several layers, and 
multiple filter sizes, but fewer filters and parameters to improve efficacy and performance. Dermoscopic images 
are acquired from the International Skin Imaging Collaboration databases (ISIC-17, ISIC-18, and ISIC-19) for 
experiments. The experimental results of the proposed DCNN approach are presented in terms of precision, 
sensitivity, specificity, and other metrics. Specifically, it attains 94 % precision, 93 % sensitivity, and 91 % 
specificity in ISIC-17. It is demonstrated by the experimental results that this proposed DCNN approach out-
performs state-of-the-art algorithms, exhibiting 0.964 area under the receiver operating characteristics (AUROC) 
in ISIC-17 for the classification of skin lesions and can be used to assist dermatologists in classifying skin lesions. 
As a result, this proposed approach provides a novel and feasible way for automating and expediting the skin 
lesion classification task as well as saving effort, time, and human life.   

1. Introduction 

Cancer refers to a disease caused by the uncontrolled growth of 
abnormal cells in the body and often has the potential to replicate, 
divide, spread through the lymph and blood, and destroy normal body 
tissues (“National Cancer Institute. (2015). What is Cancer?,” 2015). Its 
mortality rate is the second highest after cardiovascular disease in the 
world. According to the International Agency for Research on Cancer 
(IARC), more than 9 million patients died and over 18 million new cases 
of cancer were reported worldwide in 2018 (Cancer - World Health 
Organization [WWW Document], 2018). Environmental factors such as 
air pollution, family history, and poor lifestyle choices such as alcohol 
and smoking can damage deoxyribonucleic acid (DNA) that may lead to 

cancer. It is clear that there is still a long way to effectively controlling 
the mortality of cancer. However, with the help of fast development of 
image processing and artificial intelligence (AI) algorithms for diagnosis 
and prognosis of the diseases, the chances of surviving many forms of 
cancer are increasing considerably in recent years. 

There are six main classes of cancer: 1) Carcinoma is a cancer that 
originates in the skin, pancreas, lungs, breasts, and other organs and 
glands; 2) Sarcoma arises in the bone, cartilage, muscle, fat, blood 
vessels, or other connective tissues of the body; 3) Leukemia begins in 
the blood-forming tissue, such as the bone marrow, and causes large 
number of abnormal blood cells to be produced; 4) Lymphoma is a 
cancer that develops in the cells of the immune system; 5) Central ner-
vous system cancer starts in the tissues of the spinal cord and brain; 6) 
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Melanoma is a type of skin cancer that begins in the cells that make the 
pigment in skin and that can spread to other organs. 

Skin cancer is one of the most widespread and fatal cancer types 
globally (Karimkhani et al., 2017). It is a key health concern with over 
10,000 newly reported cases every month around the world (Harangi, 
2018). It generally develops due to exposure to ultraviolet (UV) rays 
from the sun, which harms the DNA of skin cells. Some artificial sources 
of light, in particular tanning beds and sunlamps, increase the risk of 
developing this disease. Genetic defects are also a main source of this 
type of cancer (The Skin Cancer Foundation, 2018). 

Skin lesion can be categorized into several classes, including Mela-
noma (MEL), Melanocytic nevus (NV), Basal cell carcinoma (BCC), 
Actinic Keratosis (AK), Benign keratosis lesion (BKL), Dermatofibroma 
(DF), Vascular lesion (VASC), and Squamous cell carcinoma (SCC). BCC 
and SCC are most often found in the areas exposed to the sun, such as the 
head, neck, and arms. Most of the skin cancer classes are very common 
and also remediable. MEL is more likely to grow and spread than the 
other types of skin cancer. MEL represents less than 5% of all skin cancer 
forms, however, it is held responsible for over 70 % of all the fatalities 
caused by skin cancer (Kanimozhi and Murthi, 2016). If MEL is classified 
correctly in the early stages, the probability of mortality of patients 
could be decreased (Jerant et al., 2000). Manual recognition of MEL 
needs experienced dermatologists to overcome the problems of high 
degree of inter-class similarities and intra-class differences of skin le-
sions. Consequently, if the MEL classification has been performed 
automatically, it will improve accuracy and efficiency of the early 
detection of this type of skin cancer (Hosny et al., 2019). 

Currently, the examination of skin cancer is performed visually by 
clinical experts. In fact, clinical screening is the preliminary analysis, 
which is followed by biopsy, histopathological testing, and dermoscopic 
assessment (Esteva et al., 2017). In fact, attributive classification of skin 
lesions plays a critical role in the early and accurate diagnosis of skin 
cancer. However, it requires specific proficiency that might not be 
available in general clinical settings. Dermoscopy is the examination of 
skin via skin surface microscopy, essentially for evaluating pigmented 
skin lesions. This skin imaging modality has been developed to assist 
dermatologists and improve diagnostic accuracy in contrast to unaided 
visual inspection (Kittler et al., 2002; Vestergaard et al., 2008). The 
classification of skin lesions is particularly based on color features, 
dermal features, contour features, geometric features, and texture fea-
tures of lesions. The visual classification of skin lesions is difficult and 
may lead to wrong recognition of lesions considering the high degree of 
visual similarities among different lesion classes (Codella et al., 2015). 
For that reason, classification of skin lesions through deep convolutional 
neural network (DCNN) is an effective and alternative solution of the 
visual examination. From International Skin Imaging 
Collaboration-2019 (ISIC-19) (Malvehy et al., 2019) and recent studies 
(Chaturvedi et al., 2019; Esteva et al., 2017; Gessert et al., 2020; Har-
angi, 2018; Hekler et al., 2019; Hosny et al., 2019; Liu et al., 2020; 
Mahbod et al., 2019; Rebouças Filho et al., 2018; Winkler et al., 2020), it 
has been found that the classification of skin lesions with deep learning 
is still a challenging task due to the following reasons: 1) The classes are 
highly imbalanced (e.g., the NV class has ~54 times more examples than 
the DF class); 2) There is a high degree of inter-class similarities as well 
as intra-class differences; 3) Dermoscopic images contain various arti-
facts including hair, gel bubbles, ruler markers, ink markers, color 
illumination, patches, ebony frames, and blood vessels which make the 
recognition task very challenging. 

Recent studies show significant performance of binary classification 
of skin lesions with deep learning models (Esteva et al., 2017). None-
theless, these models cannot apply to the general multi-class classifica-
tion of skin lesions with similar classification performance. The main 
aim of this research is to develop, implement, and calibrate an advanced 
deep learning model in the context of multi-class classification of skin 
lesions with minimal pre-processing operations. This specialized DCNN 
model is designed to accurately classify dermoscopic skin lesion images 

into multiple classes. This approach is good to expedite the automated 
multi-class classification process of skin lesions. It owns the competency 
of deep learning that exceeds dermatologists in terms of accuracy and 
throughput. The experimental results demonstrate that our proposed 
DCNN-based approach has a potential to assist dermatologists for clas-
sifying dermoscopic skin lesion images. 

2. Related works 

Skin cancer is a common human malignancy (Rogers et al., 2015; 
Society, 2016; Stern, 2010) which is mostly diagnosed visually by 
clinical experts, starting with a primary clinical screening and followed 
by dermoscopic assessment, a biopsy, and histopathological testing. 
Various algorithms of classification of skin lesions utilize conventional 
artificial intelligence methods, which normally begin with a phase of 
handcrafted feature extraction, followed by a separate training phase of 
the classifier. Earlier approaches are based on low-level hand-crafted 
features for classification of MEL and non-melanoma skin lesions (Barata 
et al., 2019). Handcrafted features generally suffer from poor general-
ization capability for dermoscopic images because of obscure under-
standing of biological mechanisms and involving weak human intuition. 
Thus, the low-level handcrafted features are not suitable for dis-
tinguishing complex skin lesion images. The authors (Celebi et al., 2007) 
proposed their method to select the hand-crafted features but those 
features have huge visual resemblance issues, high degree of intra-class 
differences, and artifacts appearance in dermoscopic images gave poor 
performance. Esteva et al. (Esteva et al., 2017) employed Inception-v3 
architecture to trained on a dataset having more than 100,000 clinical 
images annotated by experienced dermatologists. They showed their 
method based on DCNN was capable to surpass 21 board-certified der-
matologists in terms of classifying the skin cancer through dermoscopy 
and photographic imaging if the training set was adequately large. For 
getting a high area under the receiver operating characteristics 
(AUROC) using dermoscopic images, Balazs Harangi (Harangi, 2018) 
proposed an ensemble technique based on neural network for skin lesion 
classification. He fused the outputs of the classification layers of four 
network architectures and showed that his approach achieved better 
result than the individual model. His proposed model attained 0.89 
average AUROC for three skin lesion classes. Mahbod et al. (Mahbod 
et al., 2019) proposed algorithm that utilized ensembles learning and 
pre-trained network to classify skin lesions and attained competitive 
results to an experienced dermatologist. Their algorithm achieved 
specificity 78 % for MEL and 86 % for BKL classes. Gessert et al. (Gessert 
et al., 2020) proposed a patch-based attention method for skin lesion 
classification task of high-resolution images with three pre-trained 
networks. They used approaches such as balanced batch sampling, 
class-specific loss weighting, and oversampling to tackle the skewed 
class distributions issue. Moreover, they also proposed a 
diagnosis-guided loss technique which considers the algorithm used for 
ground-truth annotation. In recent work, Liu et al. (Liu et al., 2020) 
proposed a two phase approach consists of mid-level feature. In the first 
phase, they detected the region of interest of dermoscopic images, while 
the second phase of their approach based on pre-trained models to 
extract features for region of interest images. Their mid-level feature 
based algorithm attained 0.87 AUROC for MEL and 0.97 AUROC for BKL 
classes. 

3. Methodology 

3.1. Pre-processing, partitioning, and augmentation of datasets 

Dermoscopic images are acquired from ISIC-17, ISIC-18, and ISIC-19 
databases for experiments. In fact, ISIC-19 is comprised of HAM10000 
(Tschandl et al., 2018), BCN (Combalia et al., 2019), and MSK (Codella 
et al., 2018) datasets. There are a total of 25,331 labeled images which 
are publicly available for classification task with eight labels: MEL, NV, 
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BCC, AK, BKL, DF, VASC, and SCC. Moreover, there are 101 different 
resolution images ranging from 576 × 768–1024 × 1024 with 3 color 
channels. The number of samples of the NV class has ~54 times more 
than DF class samples. For illustration, Fig. 1 shows some typical sam-
ples of ISIC-19 with various artifacts. 

In the pre-processing step, cropping is applied to the dermoscopic 
images in such a way that each image is transformed into a square image 
and the center of the lesion appears in the center of the corresponding 
image. During the pre-processing, the aspect ratio of each image is 
preserved. Every image is rescaled to a resolution of 64 × 64 pixels using 
inter nearest interpolation to retain its information and reduce the 

computational cost of processing. OpenCV library is employed for the 
pre-processing of the dermoscopic images. There is no need to remove 
the artifacts in the pre-processing step from the dermoscopic images 
such as hair, gel bubbles, ruler markers, ink markers, patches, dark 
borders, and others artifacts because the proposed DCNN model is very 
smart and intelligent to cope these types of artifacts with ease. ISIC-19 is 
partitioned into three parts, where the first part roughly contains 70 % of 
the data from each class to form the training set, the second part contains 
about 10 % images to form the development set for tuning the hyper-
parameters of the proposed model (see Table 1 for more details), while 
the remaining part contains about 20 % of the data from each class to 
form the test set. Fig. 2 shows the result of visualization for the eight skin 
lesion classes of ISIC-19 by the T-distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm. 

In order to solve the problem of skewed classes, overfitting, and 
training image scarcity, more augmentation operations are implemented 
to the underrepresented classes, while less or no augmentation opera-
tions to the overrepresented classes to balance the sample size in each 
class of the training set. Thus, the training set is extended virtually with 
the actual classes being balanced. For instance, the BCC and SCC classes 
have 2326 and 440 distinct images, respectively, but the sample sizes of 
the two corresponding augmented classes are similar, i.e., 9304 and 
9240, respectively (see Table 1). As for the precise data augmentation, 
three common techniques are adopted: rotation, translation, and flip-
ping. Specifically, an image is rotated by -30 to 30 degrees. For trans-
lation, an image is shifted 12.5 % to the left, the right, up, and down. For 
flipping, an image is flipped horizontally and vertically. It should be 
noted that these augmentation operations are only implemented on the 
training set, while the development and test sets only contain the 

Fig. 1. Typical samples of skin lesion of each class in ISIC-19 with various artifacts such as hair artifact (NV, BKL, DF, VASC, SCC), ink marker artifact (MEL), ruler 
marker artifact (MEL, BCC, BKL), gel bubble artifact (MEL, AK, BKL), and patch artifact (NV). 

Table 1 
ISIC-19 description, partitioning, and augmentation. “W”, “H”, and “C” signify the width, height, and color channels of image, respectively.  

Classes Training set 
(~70 %) 

Augmented 
training set 

Development set 
(~10 %) 

Test set 
(~20 %) 

Total 
(100 %) 

Average resolution 
of original image 
(W×H×C) 

MEL 3166 9498 452 904 4522 917 × 844 × 3 
NV 9013 9013 1287 2575 12,875 801 × 677 × 3 
BCC 2326 9304 332 665 3323 958 × 935 × 3 
AK 607 9105 87 173 867 960 × 938 × 3 
BKL 1837 9185 262 525 2624 846 × 736 × 3 
DF 167 9018 24 48 239 820 × 748 × 3 
VASC 177 9027 25 51 253 786 × 702 × 3 
SCC 440 9240 63 125 628 891 × 844 × 3 
Total or (average) 17,733 73,390 2532 5066 25,331 (855 × 761 × 3)  

Fig. 2. Visualization of the samples of eight skin lesion classes in ISIC-19 by the 
T-distributed Stochastic Neighbor Embedding (t-SNE) algorithm. 
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original images. Fig. 3 shows some typical NV and BKL samples using the 
pre-processing and augmentation operations with the border wrap 
function of OpenCV library. 

In ISIC-18, there are a total of 10,015 labeled images which are 
publicly available for classification task with seven labels: MEL, NV, 
BCC, AK, BKL, DF, and VASC. The number of samples of the NV class has 
~58 times more than DF class samples. In ISIC-17, there are a total of 
2750 labeled images (training set: 2000, development set: 150, and test 
set: 600) for classification tasks with three labels: MEL, NV, and BKL. 
The number of samples of the NV class has ~5 times more than BKL class 
samples. There are two binary classification tasks of skin lesions in ISIC- 
17. To distinguish MEL with NV and BKL skin lesions in the first task. 
And distinguishing BKL with MEL and NV classes in the second task. 
Similar pre-processing and augmentation operations, mentioned above, 
are also applied to ISIC-17 and ISIC-18, however, for partitioning, 
similar settings are utilized to directly compare the performance of 
proposed DCNN model with the previous methods such as Lina Liu et al. 
settings for ISIC-17 and Nils Gessert et al. settings for ISIC-18. 

3.2. Proposed DCNN model 

Being inspired by advanced DCNN models (He et al., 2016; Huang 
et al., 2017; Iqbal et al., 2020a, 2020b; Szegedy et al., 2017), a 
specialized DCNN model is proposed for the skin lesion classification 
that has been a challenging task even for experienced dermatologists. To 
tackle this problem, the proposed DCNN network, being named as 
Classification of Skin Lesions Network (CSLNet), utilizes four key kernel 
units as shown in Fig. 4. The first to fourth units are based on Block C 
with 3, 6, 9, and 3 repetitions, respectively, from top to bottom in the top 
left subfigure. Moreover, they are linked by Block D. In fact, Block C is a 
composition of Block A, B, and their concatenation operation is shown in 
the bottom subfigure, while Block A, B, and D are shown in the top right 
corner. The number of filters in Block A and B are 128 and 32, where 
their filter sizes are 1 × 1 and 3 × 3, respectively. The number of filters 
in Block D is equal to half the number of existing channels. In the first 
unit, there are 9 convolutional layers, while the second unit consists of 
18 convolutional layers, and the third kernel unit comprises 27 con-
volutional layers. These units may detect the degree of symmetry and 

color such as black-superficial epidermis, brown–epidermis, 
grey-papillary dermis, and blue-reticular dermis and responsible to 
detect the complex patterns such as reticular, globular, homogenous, 
parallel, cobblestone, lacuna, and starburst patterns, and may extract 
the complex lesion features such as atypical pigment network, streaks, 
dots and globules, pigment blotch, and milia-like cysts. In the last unit, 
there are further 9 convolutional layers to learn the features that are 
quite precise to describe the classes of skin lesions. The number of filters 
utilized by Amirreza Mahbod et al., Balazs Harangi, and Lina Liu et al. 
approaches are ~58.3 K, ~84.7 K, and ~29.1 K, respectively, while the 
number of parameters used by these approaches are ~256.7 M, ~267.5 
M, and ~45.6 M, respectively. In contrast, the number of filters and 
number of parameters used by the proposed DCNN model are ~4.6 K 
and ~4.8 M, respectively. 

Normally, the original images are rescaled to a lower resolution for 
training the network since the computational power and memory are 
generally limited. This rescaling procedure implies that the fine-grained 
image contains enough information in a medical context such as skin 
lesion classification task. While designing the proposed model, we also 
carefully remain aware of the issues of this classification problem such 
as skewed lesion class distributions, high degree of inter-class similar-
ities and intra-class variabilities, and presence of artifacts in dermo-
scopic images, which actually make the recognition task very 
challenging. Thus, we utilize 68 convolutional layers in the proposed 
DCNN model. Before each convolutional layer, the batch normalization 
(Ioffe and Szegedy, 2015) and LeakyReLU (Maas et al., 2013) are 
applied. This DCNN model is trained by the backpropagation algorithm 
that is actually based on the gradient descent rule of the loss with respect 
of the weights in the network. LeCun normal initializers (Klambauer 
et al., 2017) are used to initialize the biases and weights. LeakyReLU and 
softmax are employed as the activation functions for the convolutional 
layers and output layer, respectively. L2 norm is used as the kernel 
regularizer in a dense layer to prevent overfitting. The stochastic 
gradient descent is performed with Adamax optimizer (Kingma and Ba, 
2015) to update the weights of the proposed network with a mini batch 
size of 512 for 60 epochs. The learning rate is set by 0.0007. Further-
more, the categorical cross entropy is utilized as the loss function. Ex-
periments are performed using Keras (Chollet, 2017) with TensorFlow 

Fig. 3. Typical original, pre-processed, and augmented samples of Melanocytic nevus (NV) and Benign keratosis lesion (BKL) classes in ISIC-19.  
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(Abadi et al., 2016) backend on GPU. The hyperparameters of the pro-
posed model are tuned on the development set of ISIC-19. Specifically, 
the hyperparameters are selected according to the lowest loss of the 
DCNN model evaluated on the development set. Finally, the obtained 
model is assessed on the test set. 

4. Experiments and results 

In this section, several experiments of the proposed DCNN model, 
CSLNet, were performed for the classification of skin lesions with the 
dermoscopic images. It was tested on ISIC-17, ISIC-18, and ISIC-19, and 
compared with the state-of-the-art methods. Precision, sensitivity, 
specificity, accuracy, F1 score, Jaccard similarity coefficient (JSC), 
geometric mean (G-mean), Matthews correlation coefficient (MCC), 
Cohen’s kappa score (CKS), AUROC, precision-recall curve (PR-AUC), 
and evaluation time were considered as the metrics for the classification 
evaluation. Several earlier methods needed extensive pre-processing 
and extraction of domain-precise visual features before classification. 
In the contrary, CSLNet did not need any hand-crafted features and was 
trained end-to-end directly with the dermoscopic images to classify skin 
lesions. Specifically, it was implemented with the TensorFlow and Keras 
framework on a NVIDIA GeForce GTX 1080 card with 8GB GDDR5X 
memory. The training process took roughly 73 min for ISIC-19. 

We firstly trained CSLNet on the augmented training set and tuned 
the hyperparameters on the development set. There were 2532 skin 
lesion images in the development set in ISIC-19. This sample size was 
similar to the standard of the ImageNet computer vision challenge 
(Russakovsky et al., 2015), which has 50–100 images per object cate-
gory in its development set. In fact, hyperparameters were tuned to 
improve the performance of CSLNet and Table 2 shows the near optimal 
values of the hyperparameters, which were selected according to the 
best performance of the proposed model on the development set. That is, 
the model of CSLNet with the lowest loss on the development set was 
chosen for evaluation on the test set. 

The experimental results of CSLNet are shown in Figs. 5–8. Six main 
evaluation indices are used to evaluate the performance of the proposed 
and comparative approaches such as precision, sensitivity, specificity, 
accuracy, F1 score, and AUROC. Fig. 5a-d show the classification ac-
curacy and loss curves with the number of epochs during the training on 
the training and test sets of ISIC-17, ISIC-18, and ISIC-19. It can be seen 
that the training process converged within 60 epochs. Notably, CSLNet 
surpassed the existing deep learning-based skin lesion classification 
approaches in terms of the precision, sensitivity, specificity, accuracy, 
F1 score, and AUROC, which are clearly shown in Table 3, where the 
bold values denote the best results. Only the specificity for ISIC-17 of the 
Rebouças Filhoa et al. method is slightly better (~1.6 %) than the 
specificity of the proposed DCNN model, whereas the specificity of the 
proposed DCNN model is similar to the specificity of the method pro-
posed by Nils Gessert et al. for ISIC-18. 

The confusion matrices were calculated (shown in Fig. 6a-d), which 
provide a good insight on how often images of each individual class 
(MEL, NV, BCC, AK, BKL, DF, VASC, and SCC) are correctly classified or 
misclassified by the proposed model on the test set. Element (i, j) of 
confusion matrix represents the empirical probability of predicting class 
j given that the ground truth is class i. After carefully examining the 
confusion matrices (Fig. 6c and d), we can find that the NV class is very 
difficult to distinguish from the remaining classes. The main reason for 
this may be that the NV class has a variety of forms. In contrast, we also 
find that the average true positive rate (TPR) of the BKL class is rela-
tively high so that the BKL images can be easily recognized. As 
mentioned before, skin lesion classes specially NV has huge intraclass 
variation, and there is a high degree of visual similarity between this and 
the other lesions, which may affect the classification performance. 

We further plotted the precision-recall curves of classes on the test 
set as well as their micro-averaging precision-recall curve (shown in 
Fig. 7a-d), where a large area under the precision-recall curve signifies 

Fig. 4. The layout of the proposed network, CSLNet, where “FC” signifies the 
fully connected layer. 

Table 2 
Hyperparameter configurations of the proposed DCNN model.  

DCNN Learning algorithm Learning rate Mini-batch size Epochs Regularizer Activation function Data augmentation 

Proposed network (CSLNet) Adamax 7e-4 512 60 L2 LeakyReLU flip, translation, rotation  
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the high precision as well as the high recall. It can be observed from 
Fig. 7c and 7d that the NV class has the highest PR-AUC, whereas the 
MEL and VASC classes have the lowest one in ISIC-18 and ISIC-19, 
respectively. Finally, we plotted the receiver operating characteristic 
curves of classes on the test set as well as their macro and micro- 
averaging receiver operating characteristic curves (shown in Fig. 8a- 
d). The receiver operating characteristic curve is also valuable because it 
shows the tradeoff between the TPR and false positive rate (FPR). From 
Fig. 8c and 8d, we can further find that the AK and DF classes have the 
highest AUROC in ISIC-18 and ISIC-19, respectively, whereas the NV 
class has the lowest one. 

Precision, sensitivity, specificity, accuracy, F1 score, AUROC, PR- 
AUC, MCC, CKS, JSC, and G-mean of proposed DCNN model in the 
first binary classification task, MEL vs NV and BKL, of ISIC-17 are 93.56 
%, 92.83 %, 91.39 %, 92.83 %, 93.05 %, 0.952, 0.944, 0.791, 0.786, 
0.874, and 0.920, respectively, while these metrics for second binary 
classification task, MEL and NV vs BKL, of ISIC-17 are 94.38 %, 93.67 %, 
89.90 %, 93.67 %, 93.89 %, 0.977, 0.974, 0.775, 0.770, 0.889, and 
0.920, respectively. The overall performance of proposed DCNN model 
in terms of these metrics in ISIC-17 are 93.97 %, 93.25 %, 90.64 %, 
93.25 %, 93.47 %, 0.964, 0.959,0.783, 0.778, 0.882, and 0.920, 
respectively. Precisions, sensitivities, accuracies, and F1 scores of the 
proposed model in ISIC-17, ISIC-18, and ISIC-19 are quite similar, while 
the specificity in ISIC-17 is lower than the specificities in ISIC-18 and 
ISIC-19. Training and evaluation time of the proposed DCNN model is 
much faster than the methods proposed by Amirreza Mahbod et al. and 
Lina Liu et al. We also calculated MCC, CKS, JSC, and G-mean metrics of 
the proposed DCNN model for future comparison. After carefully 
examining Table 3, we can clearly see that the proposed DCNN model 
not only perform better for binary classification tasks but also work well 
for multi-class classification problems. 

5. Conclusions and final remarks 

Skin cancer is a leading health problem all over the world and skin 
lesion classification has a major role in the early and accurate diagnosis 
of skin cancer. In order to improve the classification performance, we 
have established a specialized DCNN model, CSLNet, for automated 
multi-class classification of skin lesions with dermoscopic images. Based 
on the skin lesion images from ISIC, data-driven deep learning algo-
rithms can be utilized to solve this challenging problem. The classifi-
cation of skin lesions is an intricate problem owning to its intrinsic inter- 
class similarities and intra-class variabilities. By making careful pre- 
processing and augmentation of ISIC-17, ISIC-18, and ISIC-19 images, 
we design a specialized DCNN model for the classification of skin le-
sions. The TPR of eight classes (Fig. 6d) indicates that it is reliable in 
recognizing the images in the BKL class as well as the other classes. Our 
proposed approach has achieved 90 % accuracy, 91 % precision, 98 % 
specificity, and 90 % sensitivity in ISIC-19. These results strongly sup-
port the statement that AI algorithms are useful to medical specialists 
during the interpretation of medical imaging. Our proposed approach 
obtains good results even with the small size of the images i.e., 64 × 64 
× 3. Its evaluation time is ~0.2 milliseconds (ms) per image. By 
attaining the domain experts-level classification performance, it can also 
be a balanced classifier where the TPR is similar to the positive pre-
dictive value (PPV). It achieves better classification results than the 
previous state-of-the-art methods without using transfer leaning. From 
Table 3, it can be clearly seen that the proposed DCNN model achieves 
better results in all the metrics than the comparative methods except 
that the specificities of the approaches proposed by Rebouças Filhoa 
et al. for ISIC-17 and Nils Gessert et al. for ISIC-18. 

Developing an automated classification system of skin lesions can 
greatly reduce the workload of dermatologists and also decrease the 
subjectivity and inaccuracy of the classification task induced by human 
error. Due to incorrect or late diagnosis, a few cases of wrong treatment 
have been reported. Since effect of treatment takes time to appear, 

Fig. 5. Classification accuracy and loss curves of CSLNet with the number of epochs during the training on the training and test sets. (a) MEL vs NV and BKL skin 
lesion classes in ISIC-17. (b) MEL and NV vs BKL skin lesion classes in ISIC-17. (c) Seven skin lesion classes in ISIC-18. (d) Eight skin lesion classes in ISIC-19. 
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sometimes misdiagnosis leads to an increased need for surgical treat-
ment and hospitalization duration (Martin C. McHenry et al., 2002). The 
attainment of skin cancer examination is considerably reliant on the 
diagnostic proficiency of dermatologists conducting the skin inspection. 
Nonetheless, dermatologists who have more than ten years’ experience 
hardly surpass 80 % recall, while dermatologists who have three to five 
years’ experience attain only 62 % recall in the skin cancer screening 
(Morton and Mackie, 1998; Vestergaard et al., 2008). This proposed 
system can become crucial and more valuable when experienced der-
matologists are not readily available and for inexperienced clinicians in 
the underdeveloped countries. It can even be applied to assign a class 

label to new skin lesion and this DCNN model is good to expedite the 
automated classification procedure of skin lesions. While these results 
are encouraging and provide strong support to that the deep learning 
approach is able to play a key role in assisting doctors and healthcare 
systems, but further validation and improvement are still required with 
more clinical information of subjects such as age, gender, race, and 
family history to evaluate the deep models in clinical practice. 
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